
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

MODELING SIMULATION AND SOFTWARE TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

USING A MODEL-BASED APPROACH FOR TEST AND EVALUATION

Retonya Dunning1, Whit Matteson1, Richard Wise1, Jennifer Sharpe1

1Georgia Tech Research Institute, Atlanta, GA

ABSTRACT

The purpose of this paper is to describe a methodology for applying Model-Based
Systems Engineering (MBSE) practices to Test and Evaluation (T&E) practices.
The Georgia Tech Research Institute GTRI has developed a process which includes
using MBSE tooling & modeling languages, automatic test case generation based
on modeling, and requirements coverage thereof. This paper describes the
developed process and the benefits that it brings to T&E practices.

Citation: R. Dunning, W. Matteson, R. Wise, J. Sharpe, “Using a Model-based Approach for Test and Evaluation”,
In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi,
MI, Aug. 11-13, 2020.

1. INTRODUCTION

 Test and Evaluation practices can be one of the
most time-consuming steps in system development.
Some test cases, such as software tests, can be
automatically executed; however, engineers must
still manually write test cases in order to verify
requirements and test scripts that execute the test
cases. The GTRI has conducted a pilot model-based
approach leveraging the Systems Modeling
Language (SysML) and the UML Testing Profile
(UTP) to expedite the Test and Evaluation (T&E)
craft by automatically generating test cases based
upon a canonical system specification. Using a
model-based approach creates a sustainable and
maintainable process to produce test cases that can
be run in an existing test infrastructure.

GTRI has developed a procedure to utilize Model

Based Systems Engineering (MBSE) in the creation
of a test suite to verify requirements. This process
uses a SysML model of the expected system
behavior to generate a test suite to run in an existing

test environment. The major steps in this procedure
involve importing requirements into a SysML
modeling tool, creating a SysML state machine to
model the expected behavior of the system-under-
test, utilizing open source tools to traverse the
model to generate a test suite containing abstract
test cases, tying the abstract test cases to concrete,
executable test cases, and exporting the test suite in
a format digestible by the test environment. Each of
these steps is detailed in subsequent sections.

2. BACKGROUND

Currently, test engineers primarily manually
develop test cases based on system requirements,
which may require the generation of hundreds or
even thousands of test cases. This often leads to
missed test cases, redundant test cases, and other
inefficiencies that result in suboptimal T&E. Auto-
generation of test cases from a comprehensive,
unified model leads to greater test coverage and
more efficient test execution.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 2 of 8

Figure 1. Manual Test Case Creation vs. Incorporating MBSE in Test Case Creation

In general, there is a need to further bridge the gap
between the system architecting and T&E
communities. Presently, system requirements exist
separately from the selection and design of T&E
methods that will be applied to the System-Under-
Test. There is no formal, model-based linkage
between these concepts that can help identify and
characterize the coverage and gaps of the T&E
environment. Since T&E activities are required to
be independent of system design to a degree, this
effort expounds on a formal method created that
applies MBSE directly to the design and selection
of T&E analyses. Figure 1 above depicts the two
test case generation processes.

Many engineering activities, including T&E, use
models; but they are disjointed. There is no
underlying model providing the “glue” needed to
have a coherent, synchronized set of views for T&E
stakeholders. An MBSE approach seeks to
establish a comprehensive description of the
interested system, including but not limited to a

SysML model. A well-formed, consistent, and
repeatable model developed using MBSE provides
the basis for developing and refining custom
validation rules similar to Unit Testing in software
architecting and design. Unit Tests are typically
automated tests written and run by software
developers to ensure separate sections of software
code behave as expected and meet the intended
design. In a similar fashion, this approach can be
applied to SysML behavior diagrams such as state-
machine and activity diagrams, which models the
sequence of events for a single object. Ultimately,
this will facilitate the auto-generation of test cases
with the MBSE environment, providing traceability
back to system requirements.

Auto-generating test suites is effective both cost-
and time-wise, as the engineers who would have
originally had to manually create these now have
time to focus on ensuring fidelity, accuracy, and
overall adherence to the original requirements.
Success can be measured quantitatively by

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 3 of 8

Figure 2. SysML Model of Expected Behavior of System

examining percentage of test coverage via auto
generated cases and the percentage of invalid
auto-generated test cases. This metric, among
others, indicates how well T&E can be adequately
captured in an MBSE environment in support of a
digital platform ecosystem.

Additionally, no open-source tool currently exists
which efficiently facilitates all steps of this
proposed process. Before developing this approach,
the researchers took time to explore open-source
and public solutions for auto-generating test cases.
Some temporary solutions were found, but each one
had a roadblock that caused the researchers to look
into creating a holistic approach.

Ultimately, model-based testing – particularly
auto generation of test cases – facilitates more
complete testing of systems. This minimizes risks
of system failures, creates an efficient framework
for regression testing and functional testing of new
features as the systems evolve, and allows for
earlier detection and resolution of discrepancies
between system design and requirements.

3. CREATING A MODEL FOR T&E
The first step in this model-based process is to

create a model by importing requirements into
Cameo Systems Modeler. The requirements
utilized in this investigation began in a CSV/Excel
format. From there, two methods were identified
for importing requirements in a CSV/Excel format
into Cameo. The first method involves importing
the requirements from a CSV/Excel file into a
requirements table, while the second involves using
the Import CSV plugin within Cameo Systems
Modeler.

Once the requirements are imported into Cameo
Systems Modeler, the next step in the process is to
create a state machine of the expected behavior of
the system-under-test, based on requirements and
SME knowledge of the system. In the state
machine, the states represent the various conditions
of the system, and the transitions represent directed
relationships between states. Figure 2 shows a
simple example of this.

It is important to model the system-under-test
accurately, as the validity of the generated test
cases is dependent on the accuracy of the state
machine. There are several useful elements to aid

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 4 of 8

in this, namely the use of actions and guards.
Actions are called behaviors associated with
triggers or states to be executed, and can be utilized
to set, increment, and/or decrement variables.
Guards are conditions that must be met before a
transition can occur [1]. Once an action is utilized
to set, increment, or decrement a variable, the guard
can then be utilized to make sure the variable meets
a specific condition before a transition can be
triggered toward a new state. This state machine of
the expected behavior of the system-under-test
facilitates the automatic generation of test cases in
a subsequent step, by using opaque behaviors
within a framework developed in SysML and UTP
to generate a JSON file representing the state
machine for the open-source tools.

4. AUTOMATIC GENERATION OF TEST
CASES

4.1. Abstract Test Case Generation

Once an accurate state machine has been
constructed, an extensible and executable
framework operates upon it in order to generate test
cases by iterating through different paths through
the state machine, where each path represents a
potential test case. This framework was developed
in SysML and UTP, and centers on the integration
of the No Magic software tools Cameo Systems
Modeler and the Cameo Simulation Toolkit with
the open-source tools AltWalker [2] and
GraphWalker [3].

AltWalker is a model-based testing framework
developed in Python that automates test execution,
and relies on GraphWalker to generate a path
through a directed graph based on a finite state
machine. GraphWalker comes with several
different path generators and stop conditions such
as "random path generation" and "stop at 100%
requirements coverage" to produce a path through
the state machine, which represents a single test
case. Essentially, AltWalker is leveraged as a low-
level of effort entry point to interact with

GraphWalker. This is mainly due to the fact that in
order to directly interact with GraphWalker, a build
automation tool, such as Maven, needs to be used.
AltWalker does not require this and can be
interacted with through its API or through basic
command line scripting.

The framework used for this model-based T&E
process includes opaque behaviors, which read in a
state machine reflecting the expected behavior of
the system-under-test in order to produce an
AltWalker schema conformant JSON file. The
command-line-interface utility function provided
by the Cameo Simulation Toolkit is used to invoke
AltWalker, which reads the JSON file, executes
GraphWalker, and reports a path through the state
machine. This is then wrapped in an iterator to run
the path generation n-number of times, as specified
by the user, to produce the test cases which form a
test suite.

4.2. Test Case Coverage of Requirements

After the paths are generated and the test suite is
formed, additional opaque behaviors read the path
generation results, ignore duplicates, and import the
unique test cases back into the T&E framework for
requirements coverage analysis to find the minimal
test suite for the maximum requirement coverage.
In order to facilitate this, the system requirements
are tied to states within the state machine which
satisfy each requirement. In this way, the states
within the test cases imply requirement coverage,
in regards to which requirements will be tested
when the test case is executed. It is important to
note that one of the stop conditions for path
generation is requirement coverage percentage,
which the user has the ability to dictate. Depending
on the complexity of the model, it may be feasible
to set the stop condition to 100% requirement
coverage.

AltWalker can be run in either online or offline
mode. When run in online mode, the steps are
executed as they are generated and a report
providing requirement coverage along with other
model statistics can be provided. However, when

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 5 of 8

run in offline mode, there is currently no option to
provide a report on the model requirement coverage
statistics. A ticket has been opened for AltWalker
to add this option in a future update. In either case,
a requirement coverage matrix is generated next,
utilizing the states that are covered by the test cases
that satisfy the requirements. The figure below
illustrates the trace of the generated path elements
to the requirements satisfied by those elements.

Figure 3. Test Case Requirement Coverage Matrix

The rows on the left contain the model elements
and the columns across the top contain the
requirements the elements satisfy. An arrow at an
intersection of the row and column indicates the
model element in the row satisfies the requirement
in the column. In Cameo, the default for a
requirement that is not satisfied is a column of
blank spaces; this indicates that none of the states
covered by the test case(s) satisfy the requirement.
For illustrative purposes, the symbol was added
to identify the requirement that is not satisfied
because the state was not a part of the test case(s).
This requirement coverage matrix allows for a
quick assessment of which requirements are not
covered, which may indicate gaps, inaccuracies, or
necessary modifications to the model.

5. TEST EXECUTION AND VERIFICATION /
VALIDATION

Once sufficient requirements coverage by the test
suite has been established, it is then run in the test
environment and the test results are collected. After
converting these results to a CSV file, Cameo
Systems Modeler can import the test results, and
represent them as matrix which traces the
successfully verified requirements to the test cases
that passed, and the unverified requirements to test
case failures. The Requirements Report Wizard
within Cameo Systems Modeler can then output the
requirements and various matrices into a report.

Figure 4. Test Suite Run Results

In this manufactured example, Figure 4 illustrates
the results of executing a set of concrete test cases,
and ultimately indicates which requirements have
been met by the system – exposed by executing the
automatically-generated test suite. The rows on the
left contain the model elements and the columns
across the top contain the requirements the
elements verify. An arrow at an intersection of the
row and column indicates the model element in the
row verifies the requirement in the column.

This is a primary advantage of a model-based
T&E environment, where all requirements are

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 6 of 8

captured, the system is described, and the test cases
are generated in one cohesive space. There is a
single source of truth for each of these elements
within the environment, where the results of test
execution and the traces back to requirements are
all captured and displayed together in an organized,
consistent manner.

6. FUTURE WORK

6.1. Concrete Test Generation
Concrete test cases are test cases containing

details to be tested in an actual test environment.
The idea here is to use the abstract test suite
generated by the AltWalker and Graphwalker tools
as a scaffolding from which to extend and embed
or link to the information necessary for the test
cases to be executed in a test environment. Each
abstract test case including data values and
behavior will need to be mapped to concrete data
values or actions such as API calls held by the real
system under test [4]. A tool or adaptor will need to
be developed to assist in the translation from high-
level abstract test cases to lower level system under
test actions. We want to use the power of object
orientation granted by UML and SysML to develop
this approach in a flexible manner so that different
test frameworks and test environments can be
explored without specifying this information in the
abstract test cases themselves.

6.2. Automated Test Execution

Two test automation frameworks are currently
being investigated both of which are primarily used
for software testing: AltWalker and the Robot
Framework. AltWalker provides the capability to
tie executable C# or Python code to the states or
vertices in the state machine graph. The online
mode command tells AltWalker to generate a path
through the state machine according to the type of
path generator chosen and stop conditions specified
and execute code corresponding to each state along
the way. Robot Framework is an open source

automation framework with a rich eco-system of
libraries and tools and uses human-readable
keyword syntax [5]. Additional Python or Java
based libraries can be developed to further extend
the framework’s utility. Robot Framework has a
layered architecture making it promising for use as
the framework to use for automated testing of
hardware and software systems.

7. CONCLUSION

7.1. Summary and Impact

Model-based testing has proven to be extremely
useful, particularly through auto generation of test
cases. Auto generation of test cases facilitates more
complete testing of systems, and increases
efficiency of generating, executing, and managing
test cases. This minimizes risks of system failures,
creates an efficient framework for regression
testing and functional testing of new features as the
systems evolve, and allows for earlier detection and
resolution of discrepancies between system design
and requirements. The usage of a framework
developed in SysML allows for a federated and
repeatable architecture, which ultimately leads to
ensuring correct and efficient test-case generation
and traceability to system requirements.

7.2. Challenges and Advantages of MBSE

Approach to T&E
Challenges
Creating the initial model requires abstract

thinking and knowledge of the system. The goal is
in fact not to model the actual system, but to model
the expected behavior of the system-under-test. It is
easy for an inexperienced modeler to get lost in the
details, which is time consuming and leads to an
excessively complex model of the system. It is also
a challenge to accurately model the behavior of a
system without having any knowledge of the
system. As such, collaboration between an
experienced modeler and a SME of the system is
necessary to avoid a bloated and/or inaccurate
model of the system behavior.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 7 of 8

This investigation used relatively simple
examples in order to demonstrate proof-of-concept
of this process, and did not explore the impact on
feasibility or efficiency for more-complex systems.
This could be done in future work. However, it is
reasonable to expect that as programs collectively
move toward a more MBSE-centric method for
designing and procuring systems, the model
content generated for complex systems as part of
the general course of applying MBSE will aid in the
creation of a state machine which reflects the
expected behavior of a system-under-test.

Advantages
There are several benefits of creating a model of

the expected behavior of the system to generate test
cases. First, it allows for more efficient testing by
reducing redundant test cases, as well as creating
test cases to simultaneously cover several
requirements, rather than creating requirements and
test cases that are one to one. Also, construction of
a SysML model reflective of the system can expose
discrepancies between the design and the
requirements. Finding these discrepancies earlier
facilitates more efficient resolution.

Second, tying requirements to the state machine
provides automated traceability. After importing
the requirements and building the state machine
from them, a requirements matrix can be created as
a source of truth of what parts of the state machines
verify the requirements. A new matrix produced
after generating the test cases provides insight to
requirement coverage. Also, after running the test
cases and importing the results back into the model,
creating a new matrix assists in identifying the
verified requirements. Finally, a final report is
produced, which enumerates which requirements
were tested, which requirements still need testing,
which requirements were tested and passed, and
which requirements were tested but failed.

Third, creating an initial model of the expected
behavior of the system sees its benefit during the
continuous enhancement of the system. As systems
evolve, there will be modifications to the

requirements that drive modifications to the design
of the system and system behaviors, which drive
modifications to test cases. Making adjustments to
the model of the behavior of the system is generally
significantly easier and more efficient than
manually locating and adjusting test cases, as well
as verifying that they do not interfere or conflict
with other test cases.

7.3. Similar Previous Efforts

During the research behind developing the
approach described in this paper, the research team
encountered two similar previous research efforts.

The first effort [6] outlines a process for test
generation and execution which entails creating a
model, traversing the model, generating abstract
test cases, mapping the abstract test cases to
concrete test cases, and then executing those test
cases on the system under test.

The second effort [7] focuses more on utilizing
model-based verification and validation earlier in
the system engineering cycle. This approach is to
develop and verify a model of the system, and then
build and validate the system to realize the model.
The portion of the effort for developing the model
focuses on SysML and tying various modeling
aspects to simulation implementation, which is
necessary for the execution of this process,
particularly creating a complete and accurate state
machine for the system-under-test.

8. REFERENCES
 [1]Altom Consulting, Use Actions and Guards,

2019. Accessed on: Jun. 1 2020. [Online].
Available:

[2]Altom Consulting, Overview, 2019. Accessed
on: Jun. 1 2020. [Online]. Available:
https://altom.gitlab.io/AltWalker/AltWalker/ov
erview.html

[3] Hermann, K. GraphWalker: Model-based
testing. 2020. v4.2.0.
https://github.com/GraphWalker

https://altom.gitlab.io/altwalker/altwalker/overview.html
https://altom.gitlab.io/altwalker/altwalker/overview.html

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using a Model-based Approach for Test and Evaluation, R. Dunning et al.

Page 8 of 8

[4] Utting, M., & Legeard, B. (2007). Practical
model-based testing : a tools approach(pp. 1 online
resource (xix, 433 pages)). Retrieved from
https://ebookcentral.proquest.com/lib/mit/detail.ac
tion?docID=282069 MIT Access Only

[5] Robot Framework Foundation, Introduction,
2020. Accessed on: Jun. 2 2020. [Online].
Available: https://robotframework.org

[6]D. Ganesan, M. Lindvall, C. Song and C.
Schulze, Model-based testing of NASA systems,
[Online]. Available:
https://www.nasa.gov/sites/default/files/03-
04_model-based_testing_of_nasa_systems.pdf.

[7]M. O. Khan, G. F. Dubos, J. Tirona and S.
Standley, Model-based verification and validation
of the SMAP uplink processes, 2013 IEEE
Aerospace Conference, Big Sky, MT, 2013, pp. 1-
9. https://ieeexplore.ieee.org/document/6496913

https://ebookcentral.proquest.com/lib/mit/detail.action?docID=282069
https://ebookcentral.proquest.com/lib/mit/detail.action?docID=282069
https://robotframework.org/
https://ieeexplore.ieee.org/document/6496913

	1. INTRODUCTION
	2. BACKGROUND
	3. CREATING A MODEL FOR T&E
	4. AUTOMATIC GENERATION OF TEST CASES
	4.1. Abstract Test Case Generation
	4.2. Test Case Coverage of Requirements

	5. TEST EXECUTION AND VERIFICATION / VALIDATION
	6. FUTURE WORK
	6.1. Concrete Test Generation
	6.2. Automated Test Execution

	7. CONCLUSION
	7.1. Summary and Impact
	7.2. Challenges and Advantages of MBSE Approach to T&E
	7.3. Similar Previous Efforts

	8. REFERENCES

